Allow and deny messagesv3.8+
Allows messages about a topic as long as they don’t contain information about another topic. For example, only allow questions about cats that aren’t related to dogs. Topics on the deny list take precedence over the allowed topics.
Prerequisites
- A Redis instance
Environment variables
-
OPENAI_API_KEY
: Your OpenAI API key
Add this section to your declarative configuration file:
_format_version: "3.0"
plugins:
- name: ai-semantic-prompt-guard
config:
embeddings:
auth:
header_name: Authorization
header_value: ${{ env "DECK_OPENAI_API_KEY" }}
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about cats
deny_prompts:
- Anything related to dogs
Make the following request:
curl -i -X POST http://localhost:8001/plugins/ \
--header "Accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "'$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "localhost",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Questions about cats"
],
"deny_prompts": [
"Anything related to dogs"
]
}
}
}
'
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/plugins/ \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $KONNECT_TOKEN" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "'$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "localhost",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Questions about cats"
],
"deny_prompts": [
"Anything related to dogs"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
region
: Geographic region where your Kong Konnect is hosted and operates. -
controlPlaneId
: Theid
of the control plane. -
KONNECT_TOKEN
: Your Personal Access Token (PAT) associated with your Konnect account.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongClusterPlugin
metadata:
name: ai-semantic-prompt-guard
namespace: kong
annotations:
kubernetes.io/ingress.class: kong
labels:
global: 'true'
config:
embeddings:
auth:
header_name: Authorization
header_value: '$OPENAI_API_KEY'
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about cats
deny_prompts:
- Anything related to dogs
plugin: ai-semantic-prompt-guard
" | kubectl apply -f -
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "$KONNECT_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_semantic_prompt_guard" "my_ai_semantic_prompt_guard" {
enabled = true
config = {
embeddings = {
auth = {
header_name = "Authorization"
header_value = var.openai_api_key
}
model = {
name = "text-embedding-3-small"
provider = "openai"
}
}
search = {
threshold = 0.7
}
vectordb = {
strategy = "redis"
distance_metric = "cosine"
threshold = 0.5
dimensions = 1024
redis = {
host = "localhost"
port = 6379
}
}
rules = {
match_all_conversation_history = true
allow_prompts = ["Questions about cats"]
deny_prompts = ["Anything related to dogs"]
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value
.
variable "openai_api_key" {
type = string
}
Add this section to your declarative configuration file:
_format_version: "3.0"
plugins:
- name: ai-semantic-prompt-guard
service: serviceName|Id
config:
embeddings:
auth:
header_name: Authorization
header_value: ${{ env "DECK_OPENAI_API_KEY" }}
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about cats
deny_prompts:
- Anything related to dogs
Make sure to replace the following placeholders with your own values:
-
serviceName|Id
: Theid
orname
of the service the plugin configuration will target.
Make the following request:
curl -i -X POST http://localhost:8001/services/{serviceName|Id}/plugins/ \
--header "Accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "'$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "localhost",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Questions about cats"
],
"deny_prompts": [
"Anything related to dogs"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
serviceName|Id
: Theid
orname
of the service the plugin configuration will target.
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/services/{serviceId}/plugins/ \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $KONNECT_TOKEN" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "'$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "localhost",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Questions about cats"
],
"deny_prompts": [
"Anything related to dogs"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
region
: Geographic region where your Kong Konnect is hosted and operates. -
controlPlaneId
: Theid
of the control plane. -
KONNECT_TOKEN
: Your Personal Access Token (PAT) associated with your Konnect account. -
serviceId
: Theid
of the service the plugin configuration will target.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-semantic-prompt-guard
namespace: kong
annotations:
kubernetes.io/ingress.class: kong
config:
embeddings:
auth:
header_name: Authorization
header_value: '$OPENAI_API_KEY'
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about cats
deny_prompts:
- Anything related to dogs
plugin: ai-semantic-prompt-guard
" | kubectl apply -f -
Next, apply the KongPlugin
resource by annotating the service
resource:
kubectl annotate -n kong service SERVICE_NAME konghq.com/plugins=ai-semantic-prompt-guard
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "$KONNECT_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_semantic_prompt_guard" "my_ai_semantic_prompt_guard" {
enabled = true
config = {
embeddings = {
auth = {
header_name = "Authorization"
header_value = var.openai_api_key
}
model = {
name = "text-embedding-3-small"
provider = "openai"
}
}
search = {
threshold = 0.7
}
vectordb = {
strategy = "redis"
distance_metric = "cosine"
threshold = 0.5
dimensions = 1024
redis = {
host = "localhost"
port = 6379
}
}
rules = {
match_all_conversation_history = true
allow_prompts = ["Questions about cats"]
deny_prompts = ["Anything related to dogs"]
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
service = {
id = konnect_gateway_service.my_service.id
}
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value
.
variable "openai_api_key" {
type = string
}
Add this section to your declarative configuration file:
_format_version: "3.0"
plugins:
- name: ai-semantic-prompt-guard
route: routeName|Id
config:
embeddings:
auth:
header_name: Authorization
header_value: ${{ env "DECK_OPENAI_API_KEY" }}
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about cats
deny_prompts:
- Anything related to dogs
Make sure to replace the following placeholders with your own values:
-
routeName|Id
: Theid
orname
of the route the plugin configuration will target.
Make the following request:
curl -i -X POST http://localhost:8001/routes/{routeName|Id}/plugins/ \
--header "Accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "'$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "localhost",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Questions about cats"
],
"deny_prompts": [
"Anything related to dogs"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
routeName|Id
: Theid
orname
of the route the plugin configuration will target.
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/routes/{routeId}/plugins/ \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $KONNECT_TOKEN" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "'$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "localhost",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Questions about cats"
],
"deny_prompts": [
"Anything related to dogs"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
region
: Geographic region where your Kong Konnect is hosted and operates. -
controlPlaneId
: Theid
of the control plane. -
KONNECT_TOKEN
: Your Personal Access Token (PAT) associated with your Konnect account. -
routeId
: Theid
of the route the plugin configuration will target.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-semantic-prompt-guard
namespace: kong
annotations:
kubernetes.io/ingress.class: kong
config:
embeddings:
auth:
header_name: Authorization
header_value: '$OPENAI_API_KEY'
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about cats
deny_prompts:
- Anything related to dogs
plugin: ai-semantic-prompt-guard
" | kubectl apply -f -
Next, apply the KongPlugin
resource by annotating the httproute
or ingress
resource:
kubectl annotate -n kong httproute konghq.com/plugins=ai-semantic-prompt-guard
kubectl annotate -n kong ingress konghq.com/plugins=ai-semantic-prompt-guard
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "$KONNECT_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_semantic_prompt_guard" "my_ai_semantic_prompt_guard" {
enabled = true
config = {
embeddings = {
auth = {
header_name = "Authorization"
header_value = var.openai_api_key
}
model = {
name = "text-embedding-3-small"
provider = "openai"
}
}
search = {
threshold = 0.7
}
vectordb = {
strategy = "redis"
distance_metric = "cosine"
threshold = 0.5
dimensions = 1024
redis = {
host = "localhost"
port = 6379
}
}
rules = {
match_all_conversation_history = true
allow_prompts = ["Questions about cats"]
deny_prompts = ["Anything related to dogs"]
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
route = {
id = konnect_gateway_route.my_route.id
}
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value
.
variable "openai_api_key" {
type = string
}
Add this section to your declarative configuration file:
_format_version: "3.0"
plugins:
- name: ai-semantic-prompt-guard
consumer: consumerName|Id
config:
embeddings:
auth:
header_name: Authorization
header_value: ${{ env "DECK_OPENAI_API_KEY" }}
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about cats
deny_prompts:
- Anything related to dogs
Make sure to replace the following placeholders with your own values:
-
consumerName|Id
: Theid
orname
of the consumer the plugin configuration will target.
Make the following request:
curl -i -X POST http://localhost:8001/consumers/{consumerName|Id}/plugins/ \
--header "Accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "'$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "localhost",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Questions about cats"
],
"deny_prompts": [
"Anything related to dogs"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
consumerName|Id
: Theid
orname
of the consumer the plugin configuration will target.
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/consumers/{consumerId}/plugins/ \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $KONNECT_TOKEN" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "'$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "localhost",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Questions about cats"
],
"deny_prompts": [
"Anything related to dogs"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
region
: Geographic region where your Kong Konnect is hosted and operates. -
controlPlaneId
: Theid
of the control plane. -
KONNECT_TOKEN
: Your Personal Access Token (PAT) associated with your Konnect account. -
consumerId
: Theid
of the consumer the plugin configuration will target.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-semantic-prompt-guard
namespace: kong
annotations:
kubernetes.io/ingress.class: kong
config:
embeddings:
auth:
header_name: Authorization
header_value: '$OPENAI_API_KEY'
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about cats
deny_prompts:
- Anything related to dogs
plugin: ai-semantic-prompt-guard
" | kubectl apply -f -
Next, apply the KongPlugin
resource by annotating the KongConsumer
resource:
kubectl annotate -n kong CONSUMER_NAME konghq.com/plugins=ai-semantic-prompt-guard
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "$KONNECT_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_semantic_prompt_guard" "my_ai_semantic_prompt_guard" {
enabled = true
config = {
embeddings = {
auth = {
header_name = "Authorization"
header_value = var.openai_api_key
}
model = {
name = "text-embedding-3-small"
provider = "openai"
}
}
search = {
threshold = 0.7
}
vectordb = {
strategy = "redis"
distance_metric = "cosine"
threshold = 0.5
dimensions = 1024
redis = {
host = "localhost"
port = 6379
}
}
rules = {
match_all_conversation_history = true
allow_prompts = ["Questions about cats"]
deny_prompts = ["Anything related to dogs"]
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
consumer = {
id = konnect_gateway_consumer.my_consumer.id
}
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value
.
variable "openai_api_key" {
type = string
}
Add this section to your declarative configuration file:
_format_version: "3.0"
plugins:
- name: ai-semantic-prompt-guard
consumer_group: consumerGroupName|Id
config:
embeddings:
auth:
header_name: Authorization
header_value: ${{ env "DECK_OPENAI_API_KEY" }}
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about cats
deny_prompts:
- Anything related to dogs
Make sure to replace the following placeholders with your own values:
-
consumerGroupName|Id
: Theid
orname
of the consumer group the plugin configuration will target.
Make the following request:
curl -i -X POST http://localhost:8001/consumer_groups/{consumerGroupName|Id}/plugins/ \
--header "Accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "'$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "localhost",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Questions about cats"
],
"deny_prompts": [
"Anything related to dogs"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
consumerGroupName|Id
: Theid
orname
of the consumer group the plugin configuration will target.
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/consumer_groups/{consumerGroupId}/plugins/ \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $KONNECT_TOKEN" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "'$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "localhost",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Questions about cats"
],
"deny_prompts": [
"Anything related to dogs"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
region
: Geographic region where your Kong Konnect is hosted and operates. -
controlPlaneId
: Theid
of the control plane. -
KONNECT_TOKEN
: Your Personal Access Token (PAT) associated with your Konnect account. -
consumerGroupId
: Theid
of the consumer group the plugin configuration will target.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-semantic-prompt-guard
namespace: kong
annotations:
kubernetes.io/ingress.class: kong
config:
embeddings:
auth:
header_name: Authorization
header_value: '$OPENAI_API_KEY'
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: localhost
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Questions about cats
deny_prompts:
- Anything related to dogs
plugin: ai-semantic-prompt-guard
" | kubectl apply -f -
Next, apply the KongPlugin
resource by annotating the KongConsumerGroup
resource:
kubectl annotate -n kong CONSUMERGROUP_NAME konghq.com/plugins=ai-semantic-prompt-guard
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "$KONNECT_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_semantic_prompt_guard" "my_ai_semantic_prompt_guard" {
enabled = true
config = {
embeddings = {
auth = {
header_name = "Authorization"
header_value = var.openai_api_key
}
model = {
name = "text-embedding-3-small"
provider = "openai"
}
}
search = {
threshold = 0.7
}
vectordb = {
strategy = "redis"
distance_metric = "cosine"
threshold = 0.5
dimensions = 1024
redis = {
host = "localhost"
port = 6379
}
}
rules = {
match_all_conversation_history = true
allow_prompts = ["Questions about cats"]
deny_prompts = ["Anything related to dogs"]
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
consumer_group = {
id = konnect_gateway_consumer_group.my_consumer_group.id
}
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value
.
variable "openai_api_key" {
type = string
}